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Abstract

A direct boundary element algorithm is developed for the dynamic analysis of thin elastoplastic building ¯oor
slabs directly supported by columns. The formulation employs the classical boundary element methodology

dedicated to the analysis of elastoplastic plates. The method uses the static fundamental solution of the thin elastic
plate problem. In this case, boundary as well as interior elements are used in the space descritization of the
problem. This is due to the presence of plasticity and inertial e�ects in the integral formulation. An explicit time

integration algorithm, employed on the incremental form of the matrix equation of motion, leads to the solution of
the problem. Simple practical examples illustrate the accuracy and the e�ciency of the proposed algorithm. 7 2000
Elsevier Science Ltd. All rights reserved.
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1. Introduction

The introduction of the direct boundary element method (BEM) to the solution of the dynamic
analysis problem of inelastic plates was ®rst developed Fotiu et al. (1994), Providakis and Beskos (1993,
1994), Providakis et al. (1994) and Providakis (1999). As explained in the book on plates and shells

edited by Beskos (1991) and the recent review article of Beskos (1995) there are basically two BEM
approaches. The ®rst BEM approach employs the elastodynamic fundamental solution of the problem in
conjunction with modal synthesis and was applied to determine the dynamic response of viscoplastic

damaging plates. The second one, named domain boundary element method (D/BEM), employs the
elastostatic fundamental solution of the problem and was dedicated to determine the dynamic response
of viscoplastic and elastoplastic plates. Following the above works, many other articles have already
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been published trying to extend the boundary element formulation to solve particular problems in
engineering.

The boundary element algorithm proposed in this paper is applied to the dynamic analysis of
elastoplastic building ¯oor slabs. The importance of this analysis is approved by the increasing number
of buildings designed with slabs directly supported by columns, basically due to the low cost of
construction. The problem of the e�ect of internal supports in the elastic analysis of plates was
successfully solved in the signi®cant works of Bezine (1981), Hartmann and Zotemantel (1986) and
particularly for the case of elastic building ¯oor slab analysis in the work of Paiva and Ventourini
(1985). Katsikadelis et al. (1988, 1990) were the ®rst to apply the direct boundary element method to the
dynamic analysis of elastic plates with internal supports. Their approach was mainly based on the
capability to establish numerically Green's function for the corresponding static problem of the plate,
subjected to the given boundary conditions without supports, using BEM.

In the present paper a D/BEM algorithm is presented to treat the time-dependent inelastic analysis of
an elastoplastic building ¯oor slab which besides the boundary supports, are also supported on points,
lines or regions (patches) within the domain of the plate. It can be considered as an extension of the
work of Providakis and Beskos (1993, 1994) and Providakis (1999) to include internal supports which
may yield elastically, linearly or nonlinearly. The proposed algorithm can model a whole ¯oor slab, with
all the restrictions imposed by columns, employing very simple meshes and computes precisely the
values of all bending and shear e�orts including those at points located on the support areas or along
load discontinuities. The Prandtl±Reuss stress±strain law based on Von Mises' yield condition are used
to model hardening elastoplastic material behaviour. The descritized version of the equation of motion
after using the boundary conditions are solved by the step-by-step time integration algorithm of the
central predictor method.

Practical numerical examples presented in this paper evaluate the reliability of the proposed method
and demonstrate its e�ectiveness.

2. Formulation of the problem

Consider a homogeneous, isotropic, thin ¯oor slab of thickness h and of arbitrary domain S and
boundary G, which is subjected to a transverse dynamic load under the Kircho�s plate assumptions of
small deformations. The equation of motion for the elastic plate bending can be reformulated in
incremental form to include the plastic strain increments. Thus the incremental form of the governing
equation of motion for the elastoplastic ¯oor slab is

Dr4dw � dqÿ rhdaÿ r 2�dMp � �1�
where d denotes increments, r is the mass density of the slab, a is the acceleration of the lateral motion,
q is the applied lateral load per unit area, D � Eh3=12�1ÿ n2� is the ¯exural rigidity of the slab with E
being the elastic modulus, n, the Poisson ratio and the quantity r 2�dMp� describes the plastic moment
e�ect and is given by

r 2�dMp � � @ 2dMp
x

@x 2
� 2

@ 2dMp
xy

dxdy
� @

2dMp
y

@y2
�2�

where xy indicates the middle plate plane. In the case of a ¯oor slab resting on internal supports, the
lateral load q is given by (Katsikadelis et al., 1988, 1990)

1. For a support at a point xi:
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q � ÿp�w�xi ��� �q xi 2 S �3�
2. For a support on a line li:

q � ÿp�w�x��� �q x 2 li � S �4�
3. For a support on a region (patch) ri:

q � ÿp�w�x��� �q x 2 ri � S �5�

where p � p�w� is, in general, a nonlinear function, describing the reacting forces at, say, interior point i
and �q is the dynamic lateral load applied on the plate.

Consequently, the di�erential equation of motion of an elastoplastic ¯oor slab resting on boundary
and/or internal supports in its incremental form is

Dr4dw � ÿp�dw� � d �qÿ rhdaÿ r 2�dMp � �6�
The quantities ÿp�dw�, r 2�dMp� and rhda simply appear in Eq. (6) as an additional e�ective lateral load.
Thus, introducing the quantity dQ in the incremental form

dQ � ÿp�dw� � d �qÿ rhda �7�
the equation of motion, Eq. (6) becomes

Dr4dw � dQÿ r 2�dMp � �8�

3. Boundary integral equations

Considering Eq. (1), extending the work of Stern (1979) on plate elastostatics and following the
procedure presented in Providakis and Beskos (1993, 1994) and Providakis (1999) for elastoplastic ¯oor
slab dynamics one can obtain for a point x, inside the region S of the slab, the integral equation

dw
�
x
0

�
�
�
G

�
UdVn�dw� ÿ dwVn�U�

	
dG
�
X
0

�
�
�
G

�
@

@n
�dw�Mn�U� ÿ @U

@n
dMn�dw�

�
dG
�
X
0

�

ÿ
� �

S

(
@ 2U

@x 2
dMp

x � 2
@ 2U

@x 2
dMp

xy �
@ 2U

@y2
dMp

y ÿUdQ

)
dS�

XK
k�1

�
kdwMnt�U�k

ÿ kUdMnt�dw�k
	
k �9�

where n is the outward normal vector on G and dVn, dMn,
@
@n �dw� represent increments of equivalent

shear force, normal bending moment and normal slope, respectively. The summed quantity denotes the
discontinuity jump of the increment of the twisting moment dMn at a corner on a G and the
fundamental solution

U � r2 lnr

8pD
�10�

physically represents the lateral de¯ection at a point x
0

of an in®nitely extended elastic plate due to a
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lateral concentrated unit load at x
0

with x
0

and x
0

being two points in S and r � j x
0
ÿ x

0
j: Explicit

expressions for dU=dn, Mn�U �, Vn�U � and Mnt�U � can be found in Providakis and Beskos (1994). By
bringing point x

0
to a position X

0
on the boundary through a limiting process one can obtain from Eq.

(9) the boundary integral equation

Do
2p

dw
�
X
0

�
�
�
G

�
UdVn�dw� ÿ dwVn�U�

	
dG
�
X
0

�
�
�
G

�
@

@n
�dw�Mn�U� ÿ @U

@n
dMn�dw�

�
dG
�
X
0

�

ÿ
�
S

�(
@ 2U

@x 2
dMp

x � 2
@ 2U

@x 2
dMp

xy �
@ 2U

@y2
dMp

y ÿUdQ

)
dS�

XK
k�1

�
kdwMnt�U�k

ÿ kUdMnt�dw�k
	
k �11�

where the angle do � o1 ÿ o2 is the internal angle of the general corner boundary point X
0

in question
with o1 and o2 being the angles between the tangent vectors on the left and right side of X

0
and the axis

x, respectively.
For a well posed plate bending problem one more boundary integral equation is needed. This is

achieved by replacing U by the fundamental solution (Providakis and Beskos, 1994)

Uj � @U

@z
� 1

8pD
r�1� 2 ln r�cos j �12�

which is actually the de¯ection caused by a couple rotating in the direction of a vector z and j is the
angle between r and the ®xed direction z: Using Uj one can ®nally produce for a general boundary
point X

0
the following integral equation

c1
@

@n1
dw
�
X
0

�
� c2

@

@n2
dw
�
X
0

�
�
�
G

n
UjdVn�dw� ÿ

�
dwÿ dw
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X
0

��
Vn

ÿ
Uj
�o
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�
X
0

�
�
�
G

�
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�dw�Mn

ÿ
Uj
�ÿ @Uj

@n
dMn�dw�

�
dG
�
X
0

�
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� �
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(
@ 2Uj

@x 2
dMp

x � 2
@ 2Uj

@x 2
dMp
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@ 2Uj
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dMp

y

)
dS

ÿ
� �

S

�ÿUjd �q�Ujrhda
	

dS�
XK
k�1

n
kdwMnt

ÿ
Uj
�k ÿ kUjdMnt�dw�k

o
k

�13�

where n1, n2 are the normal vectors on the left and right side of X
0
, respectively, and the characteristic

functions c1 and c2 have the values

c1 � Do
2p

cos y� n
2p

�
1

2
sin 2o cos y� sin2o sin y

�o1

o2

c2 � Do
2p

sin y� n
2p

�
sin2o cos yÿ 1

2
sin 2o sin y

�o1

o2

�14�
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where y is the angle between the global axis x and the unit normal vector n at the boundary point X
0

in
question. Explicit expressions for the kernel functions in Eq. (13) can be found in Providakis (1999).

By replacing the reactive forces on the internal supports by the load applied at each node of a mesh
used to descritize the plate domain, Eqs. (9), (11) and (13) become

dw
�
x
0

�
�
�
G

�
UdVn�dw� ÿ dwVn�U�
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ÿ
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@x 2
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@x 2
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@ 2U

@y2
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y ÿUd �q�Urhda

)
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X
i
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�
dw�xi �

�
ÿ
X
i
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�
dw�x�� dSx ÿ

X
i

�
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kdwMnt�U�k ÿ kUdMnt�dw�k

	
k �15�
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� ��ÿUjd �q�Ujrhda
	

dS

ÿ
X
i

Up
�
dw�xi �

�ÿX
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To solve this new problem it is necessary to evaluate integrals of the form
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�
li

Up
�
dw�x�� dSx,

�
li

Ujp
�
dw�x�� dsx,

�
ri

�
Up
�
dw�x�� dSx and

�
ri

�
Ujp

�
dw�x�� dSx

4. Matrix formulations

A matrix formulation for the Eqs. (15)±(17) can be obtained by:

1. An interpolation of the boundary by piecewise polynomials (Hartmann and Zotemantel, 1986). An
Hermittian interpolation is used for the increments of the de¯ections, dw, and the functions dU=dn,
Mn�U �, Vn�U � are approximated by a descritization of the boundary into a number of linear
isoparametric elements.

2. A descritization of the domain S into a number of eight noded quadrilateral interior elements.

For Eqs. (16) and (17) and after the use of boundary conditions one obtains

�GG �fIg � �HG �fYg � �QG �fLg � �FG � � �JG �
�
p�WS �

	� �MG �
�

�WI

	
�18�

where {I } and {Y } are the vectors of the unknown and known increments of the nodal boundary
values, {L } is the vector of the known increments of the nodal load values and fFGg is the vector of the
plastic moment terms, WS is the vector of unknown increments of nodal lateral de¯ection at the
supports nodes and �WI is the vector of the unknown increments of the nodal lateral accelerations at the
inertia nodes.

In the same way, as Eq. (18), the descritized version of the integral Eq. (15) in matrix form after the
use of boundary conditions reads

fWg � �GS �fIg � �HS �fYg ÿ �MS �
�

�W
	
� �QS �fLg � fFSg ÿ �JS �

�
p�WS �

	 �19�
where the vector W �

h
WS

WI

i
:

The elimination of vector {I } between Eqs. (18) and (19) and the consideration of the fact that the
values of the de¯ections W at the supports is ®xed, e.g. W � 0, yields

fWIg � �M��
�

�WI

	
� �Q��fLg � fFg���H��fYg �20�

where

�M��� �MS � ÿ �GS ��GG �ÿ1�MG �

�Q��� �QS � ÿ �GS ��GG �ÿ1�QG �

�H��� �HS � ÿ �GS ��GG �ÿ1�HG �

fFg�� fFSg ÿ �GS ��GG �ÿ1fFGg

�J��� �JS � ÿ �GS ��GG �ÿ1�JG � �21�
The in¯uence matrices [G], [H] and [J] can be considered as the sum of certain element matrices that
describe the in¯uence of the boundary element layers and interior support terms. All the boundary
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integrals in (15)±(17) are singular and they must be understood in the sense of the Cauchy principal
value and can be evaluated according to the procedure presented in Providakis (1999).

5. Stress±strain relations

After some manipulations established in Providakis and Beskos (1993, 1994) the plastic strains can be
given by the matrix equation

dfegp� �D��dfeg �22�
where �D�� � �I � ÿ �D�eÿ1 �D�ep with [I] being the identity matrix, �D�e is the elasticity matrix and

�D�ep� �D�eÿ�D�e
�
@F

@fsg
��

@F

@fsg
�T

�D�e
 
H 0 �

�
@F

@fsg
�T

�D�e
�
@F

@fsg
�!ÿ1

�23�

with H 0 being the slope of the uniaxial e�ective stress versus plastic strain curve. The Von Mises' yield
surface for the present case is given by the equation

F �
h
s2
xx � s2

yy ÿ sxxsyy � 3s2
xy

i1=2
ÿ �s �24�

where �s is the uniaxial e�ective stress.

6. Solution strategy

The values of the nodal lateral de¯ections wi at every time station are obtained by integrating forward
in time Eq. (20) through an explicit central di�erence predictor algorithm. Denoting by w, _w and �w the
total lateral de¯ection, velocity and acceleration vectors and by dw, d �w and d �w their corresponding
increments, the process of numerical time integration is carried out as follows:

Step 1. The initial distribution of lateral de¯ections, velocities and accelerations are prescribed, e.g.,

w0, _w0 and �w0 � 0 �25�
where the subscript 0 denotes the time instant t � 0:

Step 2. Lateral de¯ections at the end of the time instant t � Dt are calculated from the equation

w1 � w0 � _w0Dt� 1

2
_w0�Dt�2 �26�

Step 3. The incremental lateral de¯ections at the time instant t � iDt are computed as

dwi � wi ÿ wiÿ1 �27�
and thus the increments dwi become known.

Step 4. The second derivatives of the lateral de¯ections increments dwi can be computed by using the
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derivatives of the rotations

djx �
@dw
@x

, djy �
@dw
@y

�28�

which, in turn, can be resulted at the time instant t � iDt by using the ®nite di�erence method. For
example, derivatives of the rotations djx and djy at the point �xk, yk� can be obtained from the relation8>>><>>>:

@djx

@x
,
@djy

@x

@djx

@y
,
@djy

@y

9>>>=>>>;
at x k, yk

1

8>>>><>>>>:

�
djx, djy

	
at �xk � Dx, yk � ÿ

�
djx, djy

	
at �xk ÿ Dx, yk �

2Dx�
djx, djy

	
at �xk, yk � Dy� ÿ �djx, djy

	
at �xk, yk ÿ Dy�

2Dy

9>>>>=>>>>; �29�

i.e., by using their previous approximated values at the four di�erent points �xk�Dx, yk�, �xkÿDx, yk�,
�xk, yk�Dy�, �xk, ykÿDy�: Thus, the vector dfeg can be evaluated from the following equations

dex � @djx

@x

dey �
@djy

@y

dexy � 1

2

�
@djx

@y
� @djy

@x

�
�30�

Step 5. The increment of the plastic strain vector dfegp at the time instant t � iDt can be obtained from
Eq. (22)

Step 6. The increments of the plastic moments dMp
x, dM

p
y and dMp

xy at the time instant t � iDt are then
computed from the relations

dMp
x � D

"
@djp

x

@x
� n

@djp
y

@y

#

dMp
y � D

"
@djp

y

@y
� n

@djp
x

@x

#

dMp
xy � D

"
@djp

x

@y
� @dj

p
y

@x

#
�31�

Step 7. The increments of the moments dMx, dMy and dMxy as well as the shear forces dQx and dQy at
the time instant t � iDt are evaluated from the relations
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dMx � D

�
@djx

@x
� v

@djy

@y

�
ÿ dMp

x

dMy � D

�
@djy

@y
� n

@djx

@x

�
ÿ dMp

y

dMxy � D�1ÿ n�
2

�
@djx

@y
� @djy

@x

�
ÿ dMp

xy �32�

Step 8. The increments of the total stress vector dfsg� dfsx, sy, txyg at t � iDt is obtained by using the
expression

dfsx, sy, txyg � 12 ~z

h3
d
�
Mx, My,Mxy

	 �33�

Step 9. The values of stresses, moments and shear forces at t � iDt are obtained by using the relation

Zi � Ziÿ1 � dZ �34�

where Z stands for stresses, moments or shear forces.

Step 10. The yield surface F is computed in accordance with V. Mises yield criterion and the yielding is
checked.

Step 11. The incremental acceleration is evaluated in a nodewise manner for the time instant t � iDt by
solving Eq. (20) for df �Wg:

Step 12. The total acceleration at t � iDt is computed from

�wi � �wiÿ1 � d �wi �35�

Step 13. The total and incremental generalized displacements at time t � �i� 1�Dt are computed from

wi�1 � 2wi ÿ wiÿ1 � �wi�Dt�2 �36�
dwi�1 � wi�1 ÿ wi �37�

Step 14. Repetition of Steps 4±13 for each time increment Dt:
It should be noted here, that the above scheme becomes unstable when Dt exceeds a certain critical

value, so that, an estimation of the critical time step is crucial for the subsequent analysis. In the present
study the estimation of Tsui and Tong (1971) with minor modi®cations is found to be very well suited
to obtain a reliable description of the critical time step length. This estimation can be written as

Dt � 0:70Ls

(
r
ÿ
1� n2

�
=E

2� 0:83�1ÿ n�
�
1� 1:5�Ls=t�2

�)1=2

�38�

where Ls is the smallest distance between adjacent nodes of any parabolic element used.
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Fig. 4. Dynamic elastic and elastoplastic de¯ection history W ��t� � w�t�=�qa4=D� at point B of the plate of Fig. 1.

Fig. 5. Bending moment M� �My=qa
2 and shearing force Q� � Qy=qa variations along the line x � a=2 of the plate of Fig. 1 at

t � 0:0002 s.
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Fig. 6. Dynamic elastic and elastoplastic de¯ection history W ��t� � w�t�=�qa4=D� at point F of the plate of Fig. 2.

Fig. 7. Bending moment M� �My=qa
2 and shearing force Q� � Qy=qa variations along the line x � 4b of the plate of Fig. 2 at

t � 0:0004 s.
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7. Numerical examples

To illustrate the accuracy of the proposed method a computer program based on the analysis
presented in the previous sections has been written. Three numerical examples of elastoplastic ¯oor slabs
with di�erent boundary and interior conditions subjected to impulsive load have been studied (Figs. 1±
3).

7.1. Example 1

Consider a square simply supported ¯oor slab resting on a line support along the midspan and
subjected to a uniformly distributed suddenly applied load (Fig. 1). Fig. 4 shows the dynamic elastic and
elastoplastic response of the point B of the slab. Fig. 5 depicts the variation of the bending moment
M� �My=qa

2 and shearing force Q� � Qy=qa along the line x � a=2 as computed by the present
computer algorithm at t = 0.0002 s.

7.2. Example 2

As for the second example, a rectangular ¯oor slab with mixed boundary conditions and complicated
internal supports is considered which is subjected to a suddenly applied uniform load (Fig. 2). In Fig. 6
elastic and elastoplastic time variation of the de¯ection at the point F of the slab is shown. Fig. 7 shows
the variation of the bending moment M� �My=qa

2 and shearing force Q� � Qy=qa along the line x �
4b at t = 0.0004 s.

Fig. 8. Dynamic elastic and elastoplastic de¯ection history W ��t� � w�t�=�qa4=D� at point G of the plate of Fig. 3.
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7.3. Example 3

In this example, a square ¯oor slab with mixed boundary conditions and supported on four
symmetrically located interior square regions (patches) has been considered. The sides of the interior
regions has been taken equal to the seventh part of the whole plate side (Fig. 3). The computed response
of the points G is depicted in Fig. 8. Fig. 9 shows the variation of the bending moment M� �My=qa

2

and shearing force Q� � Qy=qa along the line x � c at t = 0.0005 s.

8. Conclusions

In this paper a domain/boundary element method has been presented for solving dynamic
elastoplastic plate problems which, in addition to the boundary supports, are also supported inside the
domain on points (columns), lines (walls) and regions (patches). On the basis of the preceding
developments the following conclusions can be deduced:

(a) The BEM solution is very well suited to the dynamic elastoplastic problem of thin plates resting
on internal supports.
(b) Plates having an arbitrary shape and supported to all kinds of boundary conditions and loading
can be e�ectively analyzed.
(c) The examples analyzed in this paper emphasize the accuracy of the boundary element
formulation.
(d) Besides the capability of the proposed method to treat linear elastic yielding of internal supports
it can also be used to solve nonlinear elastic ones.

Fig. 9. Bending moment M� �My=qa
2 and shearing force Q� � Qy=qa variations along the line x � c at t � 0:0005 s.
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