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Abstract

A direct boundary element algorithm is developed for the dynamic analysis of thin elastoplastic building floor
slabs directly supported by columns. The formulation employs the classical boundary element methodology
dedicated to the analysis of elastoplastic plates. The method uses the static fundamental solution of the thin elastic
plate problem. In this case, boundary as well as interior elements are used in the space descritization of the
problem. This is due to the presence of plasticity and inertial effects in the integral formulation. An explicit time
integration algorithm, employed on the incremental form of the matrix equation of motion, leads to the solution of
the problem. Simple practical examples illustrate the accuracy and the efficiency of the proposed algorithm. © 2000
Elsevier Science Ltd. All rights reserved.
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1. Introduction

The introduction of the direct boundary element method (BEM) to the solution of the dynamic
analysis problem of inelastic plates was first developed Fotiu et al. (1994), Providakis and Beskos (1993,
1994), Providakis et al. (1994) and Providakis (1999). As explained in the book on plates and shells
edited by Beskos (1991) and the recent review article of Beskos (1995) there are basically two BEM
approaches. The first BEM approach employs the elastodynamic fundamental solution of the problem in
conjunction with modal synthesis and was applied to determine the dynamic response of viscoplastic
damaging plates. The second one, named domain boundary element method (D/BEM), employs the
elastostatic fundamental solution of the problem and was dedicated to determine the dynamic response
of viscoplastic and elastoplastic plates. Following the above works, many other articles have already
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been published trying to extend the boundary element formulation to solve particular problems in
engineering.

The boundary element algorithm proposed in this paper is applied to the dynamic analysis of
elastoplastic building floor slabs. The importance of this analysis is approved by the increasing number
of buildings designed with slabs directly supported by columns, basically due to the low cost of
construction. The problem of the effect of internal supports in the elastic analysis of plates was
successfully solved in the significant works of Bezine (1981), Hartmann and Zotemantel (1986) and
particularly for the case of elastic building floor slab analysis in the work of Paiva and Ventourini
(1985). Katsikadelis et al. (1988, 1990) were the first to apply the direct boundary element method to the
dynamic analysis of elastic plates with internal supports. Their approach was mainly based on the
capability to establish numerically Green’s function for the corresponding static problem of the plate,
subjected to the given boundary conditions without supports, using BEM.

In the present paper a D/BEM algorithm is presented to treat the time-dependent inelastic analysis of
an elastoplastic building floor slab which besides the boundary supports, are also supported on points,
lines or regions (patches) within the domain of the plate. It can be considered as an extension of the
work of Providakis and Beskos (1993, 1994) and Providakis (1999) to include internal supports which
may yield elastically, linearly or nonlinearly. The proposed algorithm can model a whole floor slab, with
all the restrictions imposed by columns, employing very simple meshes and computes precisely the
values of all bending and shear efforts including those at points located on the support areas or along
load discontinuities. The Prandtl-Reuss stress—strain law based on Von Mises’ yield condition are used
to model hardening elastoplastic material behaviour. The descritized version of the equation of motion
after using the boundary conditions are solved by the step-by-step time integration algorithm of the
central predictor method.

Practical numerical examples presented in this paper evaluate the reliability of the proposed method
and demonstrate its effectiveness.

2. Formulation of the problem

Consider a homogeneous, isotropic, thin floor slab of thickness & and of arbitrary domain S and
boundary I', which is subjected to a transverse dynamic load under the Kirchoffs plate assumptions of
small deformations. The equation of motion for the elastic plate bending can be reformulated in
incremental form to include the plastic strain increments. Thus the incremental form of the governing
equation of motion for the elastoplastic floor slab is

DV*Sw = g — phdo. — V[SMP] (1)

where 0 denotes increments, p is the mass density of the slab, o is the acceleration of the lateral motion,
g is the applied lateral load per unit area, D = Eh*/12(1 —v?) is the flexural rigidity of the slab with E
being the elastic modulus, v, the Poisson ratio and the quantity V2[6MP] describes the plastic moment
effect and is given by

920Mp _3FOMD,  3OMP

V2sMP] = ! 2
oM dx?2 + Ox0y + dy? @

where xy indicates the middle plate plane. In the case of a floor slab resting on internal supports, the
lateral load ¢ is given by (Katsikadelis et al., 1988, 1990)

1. For a support at a point &;:
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q= —P[W(Cvi)] +q & eS (3)

2. For a support on a line /;:

g=-pw&]+q telics “
3. For a support on a region (patch) r;:
qg=-p[wO]+q terncs )

where p = p(w) is, in general, a nonlinear function, describing the reacting forces at, say, interior point i
and ¢ is the dynamic lateral load applied on the plate.

Consequently, the differential equation of motion of an elastoplastic floor slab resting on boundary
and/or internal supports in its incremental form is

DV*ow = —plow] + 6 — phdo — V[ MP] 6)

The quantities —p[dw], V2[0MP] and phda simply appear in Eq. (6) as an additional effective lateral load.
Thus, introducing the quantity 60 in the incremental form

50 = —plowl + 8G — phdu ™)
the equation of motion, Eq. (6) becomes

DV*ow = 60 — V2[5 MP] (®)

3. Boundary integral equations

Considering Eq. (1), extending the work of Stern (1979) on plate elastostatics and following the
procedure presented in Providakis and Beskos (1993, 1994) and Providakis (1999) for elastoplastic floor
slab dynamics one can obtain for a point &, inside the region S of the slab, the integral equation

5w( 5) - JF{ UV, (6w) — owV,(U)} dr({() + J {;—n(éw)Mn(U) — 88—(”]5Mn((5w)} dF(X)

~ r
92U 92U 92U LS
_ ”S{m(wg + 2méM§y + W&Mﬁ’, - UéQ} ds + ]z;{ 6w M, (D)
— UM, (6w |, ©)

where n is the outward normal vector on I' and oV, 0M,, ;’—n(éw) represent increments of equivalent
shear force, normal bending moment and normal slope, respectively. The summed quantity denotes the
discontinuity jump of the increment of the twisting moment oM, at a corner on a I and the

fundamental solution

r? lnr
U= 10
8nD (10)

physically represents the lateral deflection at a point x of an infinitely extended elastic plate due to a
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lateral concentrated unit load at ¢ with x and ¢ being two points in § and r=|x — ¢&|. Explicit
expressions for dU/dn, M,(U), V,(U) and M,,(U) can be found in Providakis and Beskos™(1994). By

bringing point ¢ to a position = on the boundary through a limiting process one can obtain from Eq.
(9) the boundary integral equation

g—;oéw( ):J {U(SVn(éw) owV, (U) dF +J {—(5W)M (U) - —5M (5w)} ( )
= - o
U
2

_J J{aUéMp 2—5Mp + 0 ——5OM}) — U5Q} ds + Z 16wM,,, (O]
S d 8 k=1

— | UM, (3w }, (11)

where the angle dw = w; — w, is the internal angle of the general corner boundary point = in question

with w; and w; being the angles between the tangent vectors on the left and right side of = dnd the axis
x, respectively.

For a well posed plate bending problem one more boundary integral equation is needed. This is
achieved by replacing U by the fundamental solution (Providakis and Beskos, 1994)

U
U, = 9= = 8—Dr(l +21Inr)cos @ (12)

which is actually the deflection caused by a couple rotating in the direction of a vector { and ¢ is the

angle between r and the fixed direction {. Using U, one can finally produce for a general boundary
point = the following integral equation

clailéw( ) + czﬁéw(f)
= ur{ Uy V,(ow) — (5w - 5w(§)> Vn(Uw)] dr({()
+ Jr{%(éw)MH(Uw) Yo sm (5w)} ar(x)

n
92U, 32U, 92U,
- ——LSMP +2 P&MP ——?25MP ¢ dS
L: ax2 ST = }'}

K
_ L{ — Uy0G+ Upphoa} dS + ;[Héme(U,p)H ~ U0 M, (ol | (13)

where n;, n, are the normal vectors on the left and right side of =, respectively, and the characteristic
functions ¢; and ¢, have the values -

[}

A 1
= —wcos 0+ Al |:—sin 2w cos O + sin’w sin (9i|
2n 2n |2

(0]

1

A 1
¢ = —wsin 0+ il |:sin2w cos 0 — —sin’w sin 0] (14)
2n 2n 2

w?
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where 0 is the angle between the global axis x and the unit normal vector # at the boundary point =
question. Explicit expressions for the kernel functions in Eq. (13) can be found in Providakis (1999). "

By replacing the reactive forces on the internal supports by the load applied at each node of a mesh
used to descritize the plate domain, Egs. (9), (11) and (13) become

5w<5> =J {UsV,(6w) — owV,(U)} dF(X) +J
2 r ~

r

d U

’U 3*U *U i, R
_ LJ{BXESMP 2W51\/[§y + W(s]\/[f —Udq+ Uphé)oc} das — ZUp[éw(éi)]

_ Z L Up[ow(©)] dS;: — ZJ

i Ji

JU[)[(SW(Q‘)] ds

K
+ ) {10wM, ()] — | UM, (5w)Il}, (15)
k=1

géw(5> = J [UsV,(5w) — owV,(U)} dF(X) +J
Z)= ). 1

r

3 U
{an(aw)Mn(U) - anéM,,((Sw)} dr(x)

~

_J “ngéj\lp—}-2—5Mp +M5M”}d5—J J{—U551+Uph5“}d5
S

- Yufowe] = 3 | vplow]as - 3|

i Jli i Jri

JUp[éw(é)] dsS:

K
+ ) {10wM, ()] = 1UM,, (5wl }, (16)
k=1

‘lailéw(N)—i_cza_éW( )
= F{U(,,(SV,,((SW)—(5w—5w<§)> (U )} ( )

+ {i(éw)M,,(U(P) “’5M (6w) }

r
82
e Yosmm | ds - “{ — U,y64 + Uyphda) dS

= Y urfonce] - ZL opfon@as: - 3 |

i i i i

— Haagq’éj\/[p +2 (p(iMp +
S A
J Up[éw(f)] ds

+ Z{néme ) = UM, | (17)

To solve this new problem it is necessary to evaluate integrals of the form
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L Up[éw(é)] dSe, J U,/,p[éw(i)] dse, J

i i

JUp[éw(é)] dS: and J

i

JU(pp[éw(&j)] dSe

4. Matrix formulations

A matrix formulation for the Eqs. (15)—(17) can be obtained by:

1. An interpolation of the boundary by piecewise polynomials (Hartmann and Zotemantel, 1986). An
Hermittian interpolation is used for the increments of the deflections, éw, and the functions dU/dn,
M,(U), V,(U) are approximated by a descritization of the boundary into a number of linear
isoparametric elements.

2. A descritization of the domain S into a number of eight noded quadrilateral interior elements.

For Egs. (16) and (17) and after the use of boundary conditions one obtains
[GrUDY + [HAUY Y + [P NLY + [Fr) = ) {p(Ws) ) + (M)W} (18)

where {I} and {Y} are the vectors of the unknown and known increments of the nodal boundary
values, {L} is the vector of the known increments of the nodal load values and {F} is the vector of the
plastic moment terms, Ws is the vector of unknown increments of nodal lateral deflection at the
supports nodes and W is the vector of the unknown increments of the nodal lateral accelerations at the
inertia nodes.

In the same way, as Eq. (18), the descritized version of the integral Eq. (15) in matrix form after the
use of boundary conditions reads

(W) = [Gs )} + [HsHYY = IMsHWY + [QsHLY + (Fs) — Us){p(Ws)) (19)
Wy ]
Wl ’
The elimination of vector {/} between Eqgs. (18) and (19) and the consideration of the fact that the
values of the deflections W at the supports is fixed, e.g. W =0, yields

where the vector W = [

() + M7} = [Q1M{LY + (FY*+[HT'(Y) (20)
where

[M]"= [Ms] - [Gs]IGr] ™' [M[]
[0]"=[0s] - [Gs]IGr]~'[Qr]
[H)"= [Hs] - [Gs]IGr] ™' [Hr]
{FY'= (Fs} = [Gs]IGr] ™' {Fr)

UT = [Js] — [GsIGr] ™' [r] (21)

The influence matrices [G], [H] and [J] can be considered as the sum of certain element matrices that
describe the influence of the boundary element layers and interior support terms. All the boundary
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integrals in (15)—(17) are singular and they must be understood in the sense of the Cauchy principal
value and can be evaluated according to the procedure presented in Providakis (1999).

5. Stress—strain relations

After some manipulations established in Providakis and Beskos (1993, 1994) the plastic strains can be
given by the matrix equation

3{e}P=[D]"6{e} (22)

-1

where [D]* =[I]—[D]° [D]® with [I] being the identity matrix, [D]° is the elasticity matrix and

. e | OF BFTe,aFTeaF_1
o= or-or{ FEH 0 (H i | {WD =

with H' being the slope of the uniaxial effective stress versus plastic strain curve. The Von Mises’ yield
surface for the present case is given by the equation

2 2 22
F= [aw + 0}, — 0xx0yy + 30'xy] -0 (24)

where ¢ is the uniaxial effective stress.

6. Solution strategy

The values of the nodal lateral deflections w; at every time station are obtained by integrating forward
in time Eq. (20) through an explicit central difference predictor algorithm. Denoting by w, w and w the
total lateral deflection, velocity and acceleration vectors and by Jdw, dw and ow their corresponding

increments, the process of numerical time integration is carried out as follows:

Step 1. The initial distribution of lateral deflections, velocities and accelerations are prescribed, e.g.,
wo, Wo and W =10 (25)
where the subscript 0 denotes the time instant ¢ = 0.

Step 2. Lateral deflections at the end of the time instant 1 = At are calculated from the equation

1

Step 3. The incremental lateral deflections at the time instant 1 = iAf are computed as
oW = w; — Wi 27)

and thus the increments dw; become known.

Step 4. The second derivatives of the lateral deflections increments dw; can be computed by using the
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derivatives of the rotations

0w aow
op, = —, op, = — 28
Px =5 %=y (28)

which, in turn, can be resulted at the time instant ¢ = iA¢ by using the finite difference method. For
example, derivatives of the rotations d¢, and d¢, at the point (xy, yx) can be obtained from the relation

dd¢p, 359, {00, 09, } at (xi + Ax, yr) — {00, 09, } at (xx — Ax, yk)

ax = Ox < 2Ax (29)
30¢, 399, {00, 60, } at (X, yi +Ay) — {00y, 5, } at (xi, yi — Ay)

dy 7 dy - 2Ay

i.e., by using their previous approximated values at the four different points (x;+Ax, yi), (xr —AX, yr),
(X4, Ve +Ayp), (X, v —Ay). Thus, the vector é{e} can be evaluated from the following equations

30,
00 =T
309,
Sy = ¥
8} ay
1/do¢p 85%,)
ey = = [ L0 : 30
b 2( oy | ax (39)

Step 5. The increment of the plastic strain vector é{¢}P at the time instant ¢ = iA¢ can be obtained from
Eq. (22)

Step 6. The increments of the plastic moments 0M%, 6M} and dM?%, at the time instant 7 = /At are then
computed from the relations

_35 p 35¢P |
Px 4y i
ax ay

SMP = D

IER 350P |
<P},+v oL

SMP = D
) oy ox
P 30pP
5Aﬂ;:=z)[ang-% afy} 31)

Step 7. The increments of the moments M., 6M, and 6M,, as well as the shear forces 60, and 50, at
the time instant ¢+ = iAr are evaluated from the relations
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3¢ 900,
M, = D| =% L S
oM [ dx Y dy OM;
300,
oM, = p| 2% 4,900 | _ sy
’ ay ax 4

M, =

D(1 —v)|:85(px n Bﬁ(py

2 ay | dx } My G2

Step 8. The increments of the total stress vector d{c} =d{o, 0,, Ty} at t = iAt is obtained by using the
expression

12z
5{6);’ Ty, Txy} = h735{MXa M\fa Mxy} (33)
Step 9. The values of stresses, moments and shear forces at 1 = iAt are obtained by using the relation

Zi=Zi+0Z (34)
where Z stands for stresses, moments or shear forces.

Step 10. The yield surface F is computed in accordance with V. Mises yield criterion and the yielding is
checked.

Step 11. The incremental acceleration is evaluated in a nodewise manner for the time instant ¢ = iAz by
solving Eq. (20) for 6{W}.

Step 12. The total acceleration at ¢ = iAz is computed from
Wi = Wi—1 + ow; (35)
Step 13. The total and incremental generalized displacements at time ¢ = (i + 1)A¢ are computed from
wip1 = 2w; — wiy 4+ 1i(AD)’ (36)
OWipl = Wiyl — W (37)
Step 14. Repetition of Steps 4—13 for each time increment At.
It should be noted here, that the above scheme becomes unstable when Ar exceeds a certain critical
value, so that, an estimation of the critical time step is crucial for the subsequent analysis. In the present

study the estimation of Tsui and Tong (1971) with minor modifications is found to be very well suited
to obtain a reliable description of the critical time step length. This estimation can be written as

p(14+v2)/E v

2+0.83(1 —v)[1 + 1.5(Ly/1)*]

At = 0.70L, (38)

where L is the smallest distance between adjacent nodes of any parabolic element used.
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Fig. 4. Dynamic elastic and elastoplastic deflection history W *(r) = w(t)/(¢a*/D) at point B of the plate of Fig. 1.
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Fig. 5. Bending moment M* = M, /qa* and shearing force Q* = Q,/qa variations along the line x = a/2 of the plate of Fig. 1 at

t=10.0002 s.
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Fig. 6. Dynamic elastic and elastoplastic deflection history W *(r) = w(t)/(¢a*/D) at point F of the plate of Fig. 2.
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Fig. 7. Bending moment M* = M, /qa* and shearing force Q* = Q,/qa variations along the line x = 4b of the plate of Fig. 2 at
t =0.0004 s.
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Fig. 8. Dynamic elastic and elastoplastic deflection history W *(7) = w(z)/(qa*/D) at point G of the plate of Fig. 3.

7. Numerical examples

To illustrate the accuracy of the proposed method a computer program based on the analysis
presented in the previous sections has been written. Three numerical examples of elastoplastic floor slabs
with different boundary and interior conditions subjected to impulsive load have been studied (Figs. 1-
3).

7.1. Example 1

Consider a square simply supported floor slab resting on a line support along the midspan and
subjected to a uniformly distributed suddenly applied load (Fig. 1). Fig. 4 shows the dynamic elastic and
elastoplastic response of the point B of the slab. Fig. 5 depicts the variation of the bending moment
M* = M,/qa* and shearing force Q* = Q,/qa along the line x =a/2 as computed by the present
computer algorithm at ¢ = 0.0002 s.

7.2. Example 2

As for the second example, a rectangular floor slab with mixed boundary conditions and complicated
internal supports is considered which is subjected to a suddenly applied uniform load (Fig. 2). In Fig. 6
elastic and elastoplastic time variation of the deflection at the point F of the slab is shown. Fig. 7 shows
the variation of the bending moment M* = M,/qa* and shearing force Q* = Q,/qa along the line x =
4p at t = 0.0004 s.
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Fig. 9. Bending moment M* = M)./qa2 and shearing force Q* = Q,/qa variations along the line x = ¢ at = 0.0005 s.

7.3. Example 3

In this example, a square floor slab with mixed boundary conditions and supported on four
symmetrically located interior square regions (patches) has been considered. The sides of the interior
regions has been taken equal to the seventh part of the whole plate side (Fig. 3). The computed response
of the points G is depicted in Fig. 8. Fig. 9 shows the variation of the bending moment M* = My/qa2
and shearing force Q* = Q,/qa along the line x = ¢ at t+ = 0.0005 s.

8. Conclusions

In this paper a domain/boundary element method has been presented for solving dynamic
elastoplastic plate problems which, in addition to the boundary supports, are also supported inside the
domain on points (columns), lines (walls) and regions (patches). On the basis of the preceding
developments the following conclusions can be deduced:

(a) The BEM solution is very well suited to the dynamic elastoplastic problem of thin plates resting
on internal supports.

(b) Plates having an arbitrary shape and supported to all kinds of boundary conditions and loading
can be effectively analyzed.

(c) The examples analyzed in this paper emphasize the accuracy of the boundary element
formulation.

(d) Besides the capability of the proposed method to treat linear elastic yielding of internal supports
it can also be used to solve nonlinear elastic ones.
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